

中华人民共和国国家计量检定规程

JJG 141-2013

工作用贵金属热电偶

Working Noble Metal Thermocouples

2013-07-04 发布

2014-01-04 实施

工作用贵金属热电偶检定规程

Verification Regulation of

Working Noble Metal Thermocouples

JJG 141—2013 代替 JJG 141—2000

归 口 单 位:全国温度计量技术委员会

主要起草单位:中国测试技术研究院

中国人民解放军第五七一九工厂

参加起草单位:昆明大方自动控制科技有限公司

浙江省计量科学研究院

中石化西南油气分公司

本规程主要起草人:

陈桂生(中国测试技术研究院)

付志勇(中国测试技术研究院)

刘旭栋(中国人民解放军第五七一九工厂)

赵 晶(中国测试技术研究院)

参加起草人:

李洪福(昆明大方自动控制科技有限公司)

方晓琴(浙江省计量科学研究院)

王 东(中石化西南油气分公司)

目 录

引	言		(11)
1	范围		(1)
2	引用]文件	(1)
3	术语	······································	(1)
4	概述	<u>}</u>	(1)
4.	1 房	〔理······	(1)
4. 2	2 分	类及化学成分	(1)
4. 3	3 等	级	(1)
5	计量	性能要求	(2)
5.	1 最	大允许误差	(2)
6	通用	J技术要求·····	(3)
6.		观	
6. 2		1极直径	
6. 3		识	
7	计量	· 器具控制·······	(3)
7.		定条件	
7. :		t定项目	
7. :	8 松	定方法	(5)
7.	4 数	【据处理	(7)
7. 5	5 松	定结果的处理	(8)
7.	5 松	t定周期······	(8)
附	录 A	检定记录格式	(9)
附:	录 B	检定证书/检定结果通知书内页格式	(12)
附	录 C	贵金属热电偶整百度和检定点的热电动势值及微分热电动势值	(14)
附:	录 D	工作用铂铑 10-铂热电偶检定结果的不确定度评定	(17)

引 言

本规程代替 JJG 141—2000《工作用贵金属热电偶》,用于规范工作用贵金属热电偶的检定工作。

本次修订是以国家标准 GB/T 16839.1《热电偶 第1部分:分度表》、GB/T 16839.2《热电偶 第2部分:允差》和 GB/T 1598—2010《铂铑 10-铂热电偶丝、铂铑 13-铂热电偶丝、铂铑 30-铂铑 6 热电偶丝》、GB/T 16701—2010《贵金属、廉金属热电偶丝热电动势测量方法》及 JJF 1002—2016《国家计量位定规程编写规则》为基础。热电偶允差依据 GB/T 16839.2 的规定,热电偶电极直径及偏差依据 CB/T 1598—2010 的规定,对 JJG 141—2000 版定行了作 J。与 JJG 141—2000 相比、除编辑性修改外主要变化如下:

	一增加了引言邓分;		11
	一增加了术者部分:		_ 11
_	一对热电信电极图式	0.6.1年6.15.15.15.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
		LIN 医加了标准热电视的量	
_		新电测仪等、 和 炉的衣	16. 求进行了证整;
	一 制作热 制作热 机		
_	一地加了新热电像		
-	一册除了R型热电		
-	一对仓定读取数据		进行了调整;
_		4.1. 联系重要更换的协定所加。	4. 两整
_	一删除了原规程中的计	十算实例;	-//
_	一附录部头增加了检定	定结果的测量不确定度评定分析	沂实例
JJC	G 141—2000 约历》版	本发布情况为:	
_	—JJG 141—1988		
-	−JJG 290−1982。		

工作用贵金属热电偶检定规程

1 范围

本规程适用于长度不小于 700 mm 可拆卸的工作用铂铑 10-铂(以下简称 S型) 热电偶、工作用铂铑 13-铂(以下简称 R型) 热电偶及工作用铂铑 30-铂铑 6(以下简称 B型) 热电偶的首次检定、后续检定和使用中检查。

2 引用文件

本规程引用下列文件:

JJF 1007-2007 温度计量名词术语及定义

GB/T 1598—2010 铂铑 10-铂热电偶丝、铂铑 13-铂热电偶丝、铂铑 30-铂铑 6 热电偶丝

GB/T 16701-2010 贵金属、廉金属热电偶丝热电动势测量方法

GB/T 16839.1 热电偶 第1部分:分度表

GB/T 16839.2 热电偶 第2部分: 允差

凡是注日期的引用文件,仅注日期的版本适用于本规程;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规程。

3 术语

3.1 退火 annealing

将材料加热至某特定温度、保温后缓慢冷却的过程,以消除因加工或操作引起的应力变化(JJF 1007—2007《温度计量名词及术语》3.42)。

4 概述

4.1 原理

贵金属热电偶(以下简称热电偶)是由两种不同的贵金属导体基于塞贝克效应制成的热电温度计。两种不同的贵金属导体称为热电偶的两个电极,通常两个电极的一端焊接在一起形成一个接点,测温时放置于被测温场中,另一端测温时要求放于某一恒定温场中。故焊接端称为测量端,另一端称为参考端。

4.2 分类及化学成分

热电偶的分类及化学成分见表 1。

4.3 等级

按使用要求和热电特性不同,S型和R型热电偶分为 I级、Ⅱ级,B型热电偶分为 II级、Ⅲ级。

5 计量性能要求

5.1 最大允许误差

在适用的温度范围内,热电偶参考端为0℃时的热电动势值对分度表的偏差值换算成温度时,不得超过表2规定的最大允许误差。热电偶检定温度点及对应热电动势示值最大允许误差见表3。

名义化学成分/% 分度号 名称 Pt Rh 正极 SP 10 铂铑 10-铂热电偶 负极 SN RP 87 正极 13 铂铑 13-铂基 R 30 铂铑 30-铂铑 6 点电偶 负极 GB/ T 1598-2 注: 技 10-铂 偶丝、 13-铂 铂铑3 -铂量6热电偶 中 4.1 的规章 热电 汲和 位为摄氏度 最大允许 吴差: 分度号 +0.003 (t-1100)1 100~1 600 S, R ± 1.5 0~600 $\pm 0.25\% t$ 600~1 600 $\pm 0.25\% t$ В $\pm 0.5\% t$ III 注: t 为测量端温度; *按GB/T16839.1《热电偶 第1部分:分度表》中4、5、6和GB/T16839.2《热电 偶 第2部分: 允差》中3的规定。

表 1 热电偶分类及化学成分

表 3 热电偶检定温度点及对应热电动势最大允许误差

分度号	检定温度点* ℃	I 级 μV	Ⅱ 级 μV	Ⅲ级 μV
	419.527 (锌凝固点)	±10	±14	-
S	660.323 (铝凝固点)	±10	±17	_
	1 084.62 (铜凝固点)	±12	±32	_

表 3 (续)

分度号	检定温度点* ℃	I 级 μV	II 级 μV	Ⅲ级 µV
	419.527 (锌凝固点)	±10	±16	-
R	660.323 (铝凝固点)	±12	±19	-
	1 084.62 (铜凝固点)	±14	±37	-
	1 100	-	±27	±54
В	1 300		±35	±71
	1 500	=	±43	±87

6 通用技术要求

6.1 外观

- 6.1.1 热电偶电极表面应平滑、光洁、线径均匀。测量端焊接应牢固、圆滑、无气孔。
- 6.1.2 使用中的热电偶电极允许稍有弯曲,表面允许稍有暗色斑点,经清洗后若仍有 发黑、腐蚀斑点和明显的粗细不均匀等缺陷时,作不合格处理。

6.2 电极直径

电极直径及偏差应符合表 4 的规定。

表 4 电极直径及允许偏差

单位为毫米

电极直径	允许偏差
0.5	-0.015

注:按GB/T1598-2010《铂铑10-铂热电偶丝、铂铑13-铂热电偶丝、铂铑30-铂铑6热电偶 丝》中5.2的规定。

6.3 标识

热电偶在其保护套管上或在其所附的标签上至少应有下列内容:

- 分度号;
- ·器具编号;
- 等级;
- 制造厂商。

7 计量器具控制

7.1 检定条件

7.1.1 检定设备

检定所需的标准器及等级和配套设备按被检热电偶的类型可从表 5 和表 6 中选择。

表 5 标准器

被检热电偶		标准器*					
分度号	级别	名称	等级	数量			
S		1- 10 by 10 10 10 10 10 10 10 10					
R		标准铂铑 10-铂热电偶	一等	2 支			
n	II	标准铂铑 30-铂铑 6 热电偶	一等	2 支			
В	Ш	标准铂铑 30-铂铑 6 热电偶	二等	2 支			

7.1.2 环境条件

电测设备工作的环境温度和相对湿度应符合相应规定的要求。 实验室除地磁场外,应无影响其正常工作的外电磁场干扰。

7.2 检定项目

热电偶首次检定、后续检定和使用中检查的检定项目见表 7。

表 6 电测仪器及配套设备

序号	仪器设备名称	技术要求	用途	备注
1	电测仪器	准确度等级不低于 0.01 级, 分辨 力不低于 0.1 μV	测量热电偶热电动势	可用不低于其准确 度等级要求的其他 电测仪器
2	多路转换开关	各路寄生电势及各路寄生电势之差 均应小于 0.4 μV	切换各路热电 动势	_
3	参考端恒温器	恒温器深度应不小于 200 mm, 工作 区域温度变化不得大于(0±0.05)℃		可用满足要求的恒 温槽代替
4	管式检定炉	炉长约 600 mm,炉管内径约 20 mm,常用温度为 1 100 ℃,炉 内温度最高点偏离炉子几何中心不大于 20 mm,温度最高点±20 mm内有温度变化梯度≤0.4 ℃/10 mm的均匀温场	S型热电偶和 R型热电偶的检定	炉管内径大于20 mm的检定炉,可在炉内加装一支同轴清洁瓷管
5	高温管式检定炉	炉长约 600 mm,炉管内径约 20 mm,常用温度为 1 500 ℃,炉 内温度最高点偏离炉子几何中心不大于 20 mm,温度最高点±20 mm内有温度变化梯度≪0.5 ℃/10 mm的均匀温场	B 型热电偶的 检定	-

表 6 (续)

序号	仪器设备名称	技术要求	用途	备注
6	退火炉	炉长约 1 000 mm,常用温度为 1 100℃,应有±20 ℃的均匀温场,均匀温场长度应大于 400 mm,均匀温场的一端距炉口应小于 100 mm	S型、R型、B型热电偶的退火	
7	热电偶通电退火装置	该装置在通电退火时应不受周围气流的影响,工作电流应连续可调, 配备的交流电流表准确度不低于 0.5级,量程为(0~20)A	热电偶的通电退火	-
8	千分尺	分辨力不大于 1 μm, 最大允许误差: ±4 μm	偶丝直径的测量	V
9	其它辅助设备	如电炉、米尺等		

7.3 检定方法

7.3.1 外观检查

表 7 检定项目

检定项目	首次检定	后续检定	使用中检查
外观	+	+	+
电极直径	+	_	_
示值误差	+	+	+

注:

- 1. 表中"+"表示应检定;
- 2. 表中"一"表示可不检定。
- 7.3.1.1 按 6.1、6.2、6.3 对被检热电偶电极外观、电极直径与标识进行检查应符合 要求。
- 7.3.1.2 热电偶测量端需要重新焊接时,再焊接的热电偶测量端球形接点应符合6.1.1的要求。
- 7.3.2 清洗和退火
- 7.3.2.1 使用中的热电偶

先将热电偶卷成直径不小于 80 mm 的圆圈放入约 30%(容积比)的盐酸或硝酸溶液中浸渍 1 h 或煮沸 15 min,取出后用蒸馏水煮沸数次直至清除酸性。再将热电偶悬挂在带有铂钩的支架上,S型、R型热电偶通入 10.5 A 电流,B型热电偶通入 11 A 电流,用化学纯的硼砂接触电极上端,使硼砂溶化顺电极流下除去电极上的污垢,然后再用蒸馏水煮数次清除硼砂及污垢。

将清洗后的热电偶悬挂在支架上, S型、R型热电偶通人 10.5 A 电流, B型热电

偶通入11 A 电流,退火1h,退火时两电极夹角应尽量小。

通电退火后用无水酒精浸过的脱脂棉将电极理直,将两电极穿入清洁的有极性标志 的双孔绝缘瓷管中,在热电偶两电极套上有正负标识的绝缘套管。

Ⅰ级 S型、R型热电偶和Ⅱ级 B型热电偶,装入退火炉中,使其在从测量端起不小于 400 mm 的一段处在 (1 100±20) ℃的均匀温场中退火 2 h。

7.3.2.2 新热电偶

对于未使用过的新热电偶,可按 7. 3. 2. 1 的方法酸洗水洗后通电退火 0. 5 h, I 级 S型、R型热电偶和 I 级 B型热电偶在退火炉中再退火 2 h。

7.3.3 捆扎

先用直径为 (0.3~0.5) mm 铂丝或铂铑丝将标准热电偶和被检热电偶捆扎成束, 每束热电偶总数 (包括标准热电偶) 不应超过 5 支, 再将各测量端用直径为 (0.2~0.3) mm 的清洁铂丝捆扎 (2~3圈) 在一起,捆扎时被检热电偶和标准热电偶的测量端应处于同一垂直平面且相互间接触良好,测量端之外的电极不应互相接触。

7.3.4 装炉

将捆扎好的热电偶束置于管式检定炉中,使测量端面处于检定炉均匀温场的中心。 7.3.5 参考端的连接及连接导线

7.3.5.1 检定时参考端不得使用补偿导线延长,测量连接导线应使用同一卷单芯铜导线,导线的线径可选取 0.7 mm 左右为好。

7.3.5.2 S型、R型热电偶的参考端与测量导线应连接可靠,插入同一参考端恒温器内,插入深度大于 120 mm,插入深度应相同,确保各参考端之间的温差不超过 0.05 ℃; B型热电偶参考端与测量导线可置于 $(0\sim40)$ ℃ 的同一恒温器内。

7.3.6 示值误差的检定

7.3.6.1 检定点的选择

热电偶的检定温度点见表 3 规定。检定顺序由低温向高温逐点进行,检定炉炉温偏离检定点温度不得超过 ± 5 ℃。

7.3.6.2 双极比较法

双极比较法的检定原理图如图 1 所示。炉温升到设定的检定点后,当观测到炉温变化小于 0.1 ℃/min (S型、R型热电偶)或 0.2 ℃/min (B型热电偶)时,开始测量。测量顺序为:

标准→被检1→被检2→被检3→被检4

标准←被检1←被检2←被检3←被检4

测量时,每支热电偶的热电动势测量次数不少于 4 次;整个测量过程中炉温变化不得超过 0.5 ℃。测量读数保留到小数点后 4 位 (0.1 μV)。

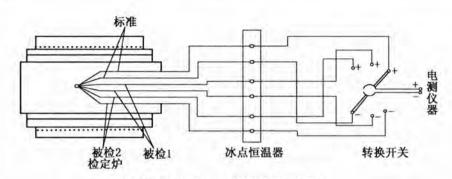


图 1 双极比较法检定原理示意图

7.3.6.3 同名极比较法

该方法适用于同分度号热电偶的检定,其检定原理图如图 2 所示。被检热电偶的电极与电测仪器的"+"端相接,标准热电偶的电极与电测仪器的"-"端相接。检定时,炉温升到设定的检定点,炉温稳定后,即可开始测量,整个测量过程中炉温变化不得超过 5 $^{\circ}$ C。每支热电偶的热电动势测量次数不少于 4 次,测量读数保留到小数点后 4 位($^{\circ}$ C)。

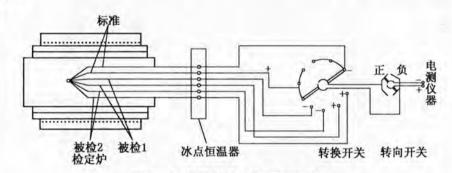


图 2 同名极法检定原理示意图

7.3.6.4 【级 S型、R型热电偶和 【级 B型热电偶,完成各检定点的第一组数据测量后,将热电偶从炉内取出,再按 7.3.3、7.3.4 重新捆扎装炉,进行第二组数据测量。两组测量值在各点的差值应小于表 8 的规定,以两组测量值的算术平均值作为测量结果。若两组测量值的差值大于表 8 的规定,应重新捆扎装炉检定。

分度号	检定温度点	I 级 μV	Ⅱ级 μV
	419.527 (锌凝固点)	3. 0	-
S, R	660.323 (铝凝固点)	3.0	-
	1 084.62 (铜凝固点)	5.0	-
В	(1 100~1 500)	-	8.0

表 8 热电偶两组测量值的差值

7.4 数据处理

7.4.1 双极比较法

7.4.1.1 同分度号

标准与被检热电偶同分度号时,被检热电偶在各检定点上的热电动势 E,采用下式

进行计算:

$$E_t = \overline{E}_{\overline{w}} + (E_{\overline{w}} - \overline{E}_{\overline{w}}) \tag{1}$$

式中:

 \bar{E}_{*} ——在检定点测得的被检热电偶的热电动势算术平均值, mV;

 E_{ii} ——标准热电偶证书中固定点上的热电动势值, mV;

 \bar{E}_{k} ——在检定点测得的标准热电偶的热电动势算术平均值, mV。

7.4.1.2 不同分度号

标准热电偶与被检热电偶不同分度号时,被检热电偶在各检定点上的热电动势 *E*, 采用下式进行计算:

$$F = E_{\overline{W}} + \frac{E_{\overline{W}}}{S_{E}} \qquad (2)$$

式中:

 S_{k} ——标准热电气在检定点的微分热电动势, mV/℃;

 S_{**} — 被 △热 \checkmark 偶在检定点的微分热电动势, $mV/^{\circ}$ 。

7.4.2 同名 & 比 发法

用同名及法益定时, 各位工具上的点电动势力, 平川工工则行业算:

$$E = E \qquad (\bar{E} \qquad \bar{E}_{\rm n}) \tag{3}$$

式中:

 E_p ——在 在 定点测量 E_p —— 在 在 定点测量 E_p —— $E_$

 E_n 一在村定点测得的设备和标准,用值,产生这些电影等术平均值,mV。

7.5 检定结果的处理

热电偶热电动势的校常结果的有效位果扩展对果阻到上面。3位,校定结果的示值误差不得超过表。(或表 2) 给定的取入允许误差。

经检定符合本规程各项技术要求的热电偶发给检定证书,不符合本规程要求的发给 检定结果通知书,关注明不合格项。

7.6 检定周期

热电偶的检定周期一版为6个月,特殊情况下可根据使用条件来确定。

附录A

检定记录格式

A.1 工作用贵金属热电偶(双极法)检定记录

衣据文	ተ፡	环境温度:		℃ 相对	湿度:	70 甲1	立: mV
标准	主器证书号:		标准	被检1	被检2	被检 3	被检4
江北大林田		委托单位				Tiplical	
证书有效期:		却希型号					
		等级			1		
电视	划设备编号	石厂编号					
		生产厂商					
		观					
	4.丝直	A/mm	,				
	标准偶证书值:						
			1	M			
	标准得分电势:			WA Y			
检定点							
${}^{\circ}\!$	支检 分度表值:						
	A 14 00 00 -1- bts			7 4			
	被检微分电势:						
	标准偶证书值:	AI/C					
	你作两此为祖:	2					
0	标准微大电势	3					
检定点	你准成人 包另	4					
°C	被检分度表值	平为			//		
	WEN ZAE	$B - \overline{E}_{\overline{W}}$					
	被检微分电势:	E _t					
		$\Delta t/^{\circ}$ C					
	标准偶证书值:	1					
		2					
	标准微分电势:	3					
检定点		4					
$^{\circ}$	被检分度表值:	平均					
		$E_{\mathbb{H}} - \overline{E}_{\overline{\kappa}}$					
	被检微分电势:	E_{ι}					
		$\Delta t/^{\circ}$ C					

检定员:

核验员:

证书号

检定日期:

年 月 日

A.2 工作用贵金属热电偶(同名极法)检定记录

检定记录编号:

依据文件:

环境温度:

℃ 相对湿度:

%

证书号:		标准	被相	金1	被相	企 2	被相	硷 3	被相	全 4
	委托单位									
效期:	规格型号									
	等 级									
备编号:	出厂编号									
	生产厂商									
	外 观									
偶	丝直径/mm									
标准	性热电偶	被检读数		-	r	г	г	-	г	r
	mV	μV	E _p	E _n	E_{p}	E _n	E _p	E _n	E_{p}	E _n
证书值:		1								
分度表值	i:	2								
微分电势	芬 :	3								
		4								
测量始值	i :	平均								
测量终值	1:	$ar{E}_{p} - ar{E}_{n}$								
		E _t /mV								
		$\Delta t/^{\circ}$ C								
证书值:		1								
分度表值	1:	2								
微分电势	办 :	3								
		4								
测量始值	i:	平均								×
测量终值	i :	$\overline{E}_{\mathtt{p}}\!-\!\overline{E}_{\mathtt{n}}$								
		E_t/mV								
		$\Delta t/^{\circ}$ C								
证书值:		1								
分度表值	i :	2								
微分电势	芩 :	3								
		4								
测量始值	1 :	平均								
测量终值	i :	\overline{E}_{p} $-\overline{E}_{n}$								
		E_t/mV								
		$\Delta t/^{\circ}$ C								
检	定结果									
	偶然 值表电 始终 值表电 始终 值表电 始终	委托单位 該期: 规格型号 等级 级号 生产厂编 外 人生产厂观 人 标准热电偶 M 证书值: 分分电值: 测量终值: 测量终值: 测量终值: 测量终值: 测量终值: 测量终值:	委托单位 「效期: 规格型号 等 级 备编号: 出厂编号 生产厂商 外 观 偶丝直径/mm 标准热电偶 mV 证书值: 1 分度表值: 2 微分电势: 3 4 测量始值: 平均 测量终值: E _p -E _n E _t /mV Δt/℃ 证书值: 1 分度表值: 2 微分电势: 3 ### ### ### ### ### ### ### ### ###	委托单位	委托单位 第 级 备编号: 出厂编号 生产厂商 外 观 偶丝直径/mm 标准热电偶 被检读数 μV 企力 企力 市水 独电偶 企校读数 μV 企力 企品 市水 地域 企业 一次 电点 企品 上、一次 电点 企品 企品 企品 一次 电点 企品 一次 电点 企品 一次 电点 企品 一次 电点	要託单位 規格型号 等 级	委托单位 規格型号 等级 3 個丝直径/mm 被检读数 μV 标准热电偶 被检读数 mV μV 证书值: 1 分度表值: 2 微分电势: 3 基始值: 平均 测量给值: 1 分度表值: 2 微分电势: 3 4 测量始值: 平均 测量数值: 平均 上/C 证书值: 1 分度表值: 2 微分电势: 3 4 测量终值: 平均 测量给值: 测量给值: 平均 测量给值: 平均 测量给值: 平均 测量给值: 平均 测量经值: Ep-En Ep-En Ep-En Ep-En Ep-En 被分电势: 3 4 测量数值: Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En Ep-En <t< td=""><td>委托单位 規格型号 等 级 名編号: 出厂編号 生产厂商 外 观 偶丝直径/mm 标准热电偶 mV μV 证书值: 1 分度表值: 2 微分电势: 3</td><td></td><td>要托单位 規格型号 等 级</td></t<>	委托单位 規格型号 等 级 名編号: 出厂編号 生产厂商 外 观 偶丝直径/mm 标准热电偶 mV μV 证书值: 1 分度表值: 2 微分电势: 3		要托单位 規格型号 等 级

检定员:

核验员:

检定日期:

年 月 日

A.3 工作用贵金属热电偶检定结果整理表

分度号: 级别:

记录编号:

		70 20 70 0				T	
热电偶 编 号	检定点	A T HILL AND D	测量值/mV				证书号
		第一组值	第二组值	一二组差值	平均值	检定结果	证书专
				1	name.	() 11 11 11 11 11 11 11 11 11 11 11 11 11	
				XXX			
				a #			
				7.0			
	SENT						
					1.0	en Sun n s	
						100	

检定员:

核验员:

检定日期:

年 月 日

附录B

检定证书/检定结果通知书内页格式

- B. 1 检定证书/检定结果通知书第 2 页参见 JJF 1002-2010《国家计量检定规程编写规则》的附录 G。
- B. 2 检定证书检定结果页

检定结果

外观		电极直径 mm	
检定温度点 ℃	热电动势 mV	示值误差	最大允许误差 ℃

以下空白

参考端温度为0℃

第×页 共×页

B. 3 检定结果通知书检定结果页

证书编号××××××-××××

检定结果

外观		电极直径 mm	
检定温度点 ℃	热电动势 mV	示值误差	最大允许误差
uerara e			
12,01	S-1-2		

参考端温度为0℃。

附加说明 说明检定结果不合格项 以下空白

第×页 共×页

附录C

贵金属热电偶整百度和检定点的热电动势值及微分热电动势值

注: 依据 GB/T 16839.1《热电偶 第1部分: 分度表》中 4、5、6 中发布的数据。 C.1 铂铑 10-铂热电偶整百度及检定点的热电动势值及微分热电动势值

t/℃	E/mV	S/ (μV/°C)
0	0.000	5.40
300	2. 323	9. 13
400	3. 259	9. 57
419. 527	3. 447	9.64
500	4. 233	9. 90
600	5. 239	10. 21
660. 323	5. 860	10. 40
700	6. 275	10. 53
800	7. 345	10. 87
900	8. 449	11. 21
1 000	9. 587	11. 54
1 084. 62	10. 575	11. 80
1 100	10. 757	11. 84
1 200	11. 951	12. 03
1 300	13. 159	12. 13
1 400	14. 373	12. 13
1 500	15. 582	12. 04
1 600	16. 777	11. 85

C. 2 铂铑 13-铂热电偶整百度及检定点的热电动势值及微分热电动势值

t/℃	E/mV	S/ (μV/℃)
0	0.000	5. 29
300	2. 401	9.74
400	3_408	10. 37
419. 527	3. 611	10.48
500	4. 471	10.89
600	5, 583 A	1 36
660 323	6. 227	11. d
00	6. 74.	1. 83
00	7. 950	12. 3
90	4 605	12.9
1 00	10. 506	3. 23
1 084.62	11.640	13. 58
1 100	11.850	13. 63
1 200	13. 228	13. 92
1 300	14. 629	14.08
1 400	16.040	14. 13
1 500	17. 451	14.06
1 600	18. 849	13. 88

C. 3 铂铑 30-铂铑 6 热电偶整百度热电动势值及微分热电动势值

t/℃	E/mV	S/ (μV/℃)
600	1.792	5.96
700	2. 431	6. 81
800	3. 154	7.64
900	3. 957	8. 41
1 000	4. 834	9. 12
1 100	5. 780	9.77
1 200	6. 786	10. 36
1 300	7.848	10. 87
1 400	8. 956	11. 28
1 500	10.099	11.56
1 600	11. 263	11. 69
1 700	12. 433	11. 67
1 800	13. 591	11. 48

附录 D

工作用铂铑 10-铂热电偶检定结果的不确定度评定

D.1 概述

热电偶检定结果的不确定度评估部分,主要是为确定标准器和电测设备选择的合理 性。检定结果不确定度的评估方法和结果为日常检定工作提供参考。

D.2 检定对象

工作用铂铑 10-铂热电偶 检定点及最大允许误差见表 D.1。

标准名称	测量范围			扩术指标
一等标准铂铑 1-铂热 偶	(419.527∼1 084.62)℃	1	(0)	\sim 0.6)°C, $k=2.85$

D. 3. 2 电测设备

数字多用表,测量范围 (0~100) mV,分辨力 0.1 √, MPE: ± (0.005%读数+ 0.002%量程)。

D. 4 测量方法

将一等标准铂铑 10-铂热电偶(以下简称标准热电偶)和工作用铂铑 10-铂热电偶(以下简称被检热电偶)捆扎后放入管式检定炉,用双极比较法在锌、铝、铜三个温度点进行检定。分别计算算术平均值,最后得到被检热电偶在各温度点的热电势值。

D.5 测量模型

检定点测量结果的测量模型:

$$E_t = E_{i\bar{t}} + (\bar{E}_{i\bar{t}} - \bar{E}_{i\bar{t}}) \tag{D.1}$$

式中:

E——被检热电偶在检定点上的热电动势值, mV;

 E_{ff} 一标准热电偶证书上给出的热电动势值, mV;

 E_{ij} 一被检热电偶测得的热电动势算术平均值, mV;

 \bar{E}_{k} ——检定时标准热电偶测得的热电动势算术平均值, mV。

 E_{tot} 和 E_{tot} 是用一台数字多用表同一时间同一条件下测得,故两组测量数据具有相关性,根据不确定度传播率得到:

$$u_{c}^{2}(y) = c_{1}^{2}u^{2}(E_{\overline{w}}) + c_{2}^{2}u^{2}(E_{\overline{w}}) + c_{3}^{2}u^{2}(\overline{E}_{\overline{w}}) + 2r(\overline{E}_{\overline{w}}, \overline{E}_{\overline{w}})c_{2}u(\overline{E}_{\overline{w}})c_{3}u(\overline{E}_{\overline{w}})$$
(D. 2)

式中, 灵敏系数:

$$c_1 = \frac{\partial E_{t}}{\partial E_{tit}} = 1$$
 $c_2 = \frac{\partial E_{t}}{\partial E_{tit}} = 1$ $c_3 = \frac{\partial E_{t}}{\partial E_{tit}} = -1$

相关系数: $r(\bar{E}_{\overline{n}}, \bar{E}_{\overline{n}}) = (-1 \sim 1)$

D.6 标准不确定度评定

主要不确定度来源:测量重复性、标准器、电测设备、分度复现性、多路开关、参考端、炉温变化等影响量。

D. 6.1 测量重复性引入的不确定度分量 u_a,用A类方法进行评定。

因在三个温度点检定时,测量重复性情况大致相同,故对其在任一检定点进行重复性分析,可代表其在其他温度点重复性情况,现以 1 084.62 ℃点测量为例分析。

用一等标准热电偶作为标准检定 I 级热电偶。测得工作偶的五组每组 10 个重复性试验数据,合并样本标准偏差 $s_{\rm pl}$ 为:

$$s_{\rm pl} = \sqrt{\frac{\sum_{j=1}^{5} s_j^2}{5}} = 0.46 \ \mu \text{V}$$

实际测量以 4 次测量值的平均值作为测量结果,所以 $u_{a1} = \frac{s_{p1}}{\sqrt{4}} = 0$. 23 μ V。测得标准偶的五组每组 10 个重复性试验数据,合并样本标准偏差 s_{p2} 为:

$$s_{p2} = \sqrt{\frac{\sum_{j=1}^{5} s_{j}^{2}}{5}} = 0.45 \ \mu \text{V}$$

实际测量以 4 次测量值的平均值作为测量结果,所以 $u_{a2} = \frac{s_{p2}}{\sqrt{4}} = 0$. 22 μ V。电测设备的测量分辨力为 0.1 μ V,由其引入的不确定度分量 $u_b = 0$.1 μ V $/2\sqrt{3} = 0$.029 μ V, u_b 与 u_{a1} 、 u_{a2} 相比很小,只考虑重复性引入的不确定度分量, u_a 为:

$$u_a = \sqrt{u_{a1}^2 + u_{a2}^2} = 0$$
. 32 μV

D. 6.2 标准热电偶引入的不确定度 u₁,用 B 类方法进行评定。

一等标准铂铑 10-铂热电偶在 (419.527~1 084.62) $\mathbb C$ 范围的扩展不确定度为: $U=(0.4\sim0.6)\,\mathbb C$, k=2.85, 因此其对应的标准不确定度为 $u_1=(0.14\sim0.21)\,\mathbb C$, 经计算 u_1 (锌) = 0.14 $\mathbb C/S_{\mathfrak H}=1.35~\mu V$ 、 u_1 (铝) = 0.166 $\mathbb C/S_{\mathfrak H}=1.73~\mu V$ 、 u_1 (铜) = 0.21 $\mathbb C/S_{\mathfrak H}=2.48~\mu V$ 。

D. 6.3 电测设备对被检偶引入的标准不确定度 u2, 用 B 类方法进行评定。

测量 仪 器 数 字 多 用 表,量 程 范 围 $(0 \sim 100)$ mV,其 年 允 许 基 本 误 差 为 $\pm (0.005\%$ 读数 $\pm (0.005\%$ 量程),按 均匀分布处理, $k=\sqrt{3}$, u_2 (t) $= a/\sqrt{3}$, 测量值近似取检定温度点的分度值,铂铑 10-铂 热电偶在三个检定点分度表上的热电势分别为:3.447 mV,5.860 mV,10.575 mV,经计算得:

 u_2 (锌) =1.26 μ V, u_2 (铝) =1.33 μ V, u_2 (铜) =1.46 μ V.

D. 6.4 电测设备对标准偶引入的标准不确定度 u3, 用 B 类方法进行评定。

标准热电偶与被检偶同分度号,用同一数字多用表测量,评估算法同 D. 6. 3,经计算得: u_3 (锌) =1. 26 μ V、 u_3 (铝) =1. 33 μ V、 u_3 (铜) =1. 46 μ V。

D. 6.5 分度复现性引入的标准不确定度 u4, 用 B 类方法进行评定。

检定时因两次捆扎装炉和炉子温场的变化给测量结果带来影响,这些影响主要表现在两次分度测量的差值上。由规程 7.3.6.4 可知,两次分度测得的数值允差分别为 3 μ V 和 5 μ V,即测量值的变化区间为 3 μ V 和 5 μ V,则区间半宽度 a 为 1.5 μ V 和 2.5 μ V,按均匀分布处理, $k=\sqrt{3}$,得: u_4 (锌) = 1.5 μ V/ $\sqrt{3}$ = 0.87 μ V、 u_4 (铝) = 1.5 μ V/ $\sqrt{3}$ = 0.87 μ V、 u_4 (铝) = 2.5 μ V/ $\sqrt{3}$ = 1.45 μ V。

D. 6. 6 测量回路寄生电势引入的标准不确定度 u₅,用 B 类方法进行评定。

本规程第 7.1.1 条可知,转换开关各路之间最大寄生电动势之差小于 0.4 μ V,标准热电偶与被检热电偶测量回路因寄生电动势差变化带来的影响小于 0.4 μ V,取区间半宽度 a 为 0.4 μ V,按均匀分布处理, $k=\sqrt{3}$,得: $u_5=a/\sqrt{3}=0.23$ μ V。

D. 6.7 热电偶参考端温差引入的标准不确定度 u₆,用 B 类方法进行评定。

由经验和试验可知: 热电偶参考端在同一冰点恒温器内,各路之间的最大温差不大于 0.05 °C,取区间半宽度 a 为 0.05 °C,铂铑 10-铂热电偶在冰点的微分热电势为: $5.40~\mu\text{V/°C}$,温差换算为电势值为 $0.27~\mu\text{V}$,按均匀分布处理, $k=\sqrt{3}$,得: $u_6=0.27~\mu\text{V}/\sqrt{3}\approx0.16~\mu\text{V}$ 。

D. 6.8 炉温变化引入的标准不确定度 u7, 用 B 类方法进行评定。

本规程第 7. 3. 6. 2 双极比较法规定,检定热电偶时炉温变化应小于 0. 1 \mathbb{C}/\min ,设每次测量标准与被检偶时的炉温变化差不超过 0. 1 \mathbb{C} ,区间半宽度 a 为 0. 05 \mathbb{C} ,按均匀分布处理, $k=\sqrt{3}$, $u_7=0.05$ $\mathbb{C}/\sqrt{3}=0.029$ \mathbb{C} ,得: u_7 (锌) = 0.029 $\mathbb{C}/S_{\mathfrak{H}}=0.28$ μ V、 u_7 (铝) = 0.029 $\mathbb{C}/S_{\mathfrak{H}}=0.30$ μ V、 u_7 (铜) = 0.029 $\mathbb{C}/S_{\mathfrak{H}}=0.34$ μ V。D. 6. 9 合成标准不确定度 u_c

标准不确定度分量 u_a 、 u_1 、 u_4 、 u_5 、 u_6 、 u_7 彼此独立不相关,且灵敏系数为 1。引入 u_2 、 u_3 两不确定度分量的两个输入量 \overline{E}_{tt} 和 \overline{E}_{tt} 强相关, \overline{E}_{tt} 变化 ΔE_{tt} 会使 \overline{E}_{tt} 等量变化 ΔE_{tt} ,则两者的相关系数估计为:

$$r(\overline{E}_{rac{d}{W}}, \ \overline{E}_{rac{d}{W}}) = \frac{u_2 \times \Delta E_{rac{d}{W}}}{u_3 \times \Delta E_{rac{d}{W}}} \approx 1$$

影响各温度点检定结果的不确定度分量及评估值列于表 D. 3。

合成标准不确定度为:

 $u_c = \sqrt{c_a^2 u_a^2 + c_1^2 u_1^2 + c_2^2 u_2^2 + c_3^2 u_3^2 + 2rc_2 c_3 u_2 u_3 + c_4^2 u_4^2 + c_5^2 u_5^2 + c_6^2 u_6^2 + c_7^2 u_7^2}$

因为 u_2 、 u_3 两不确定度分量大小相等,且正强相关,相关系数为 1,两个分量的灵敏系数都为 1,但符号相反,因此由 u_2 、 u_3 及协方差引入的不确定度相互抵消。合成标准不确定度变为:

 $u_{c} = \sqrt{c_{a}^{2} u_{c}^{2} + c_{1}^{2} u_{1}^{2} + c_{4}^{2} u_{4}^{2} + c_{5}^{2} u_{5}^{2} + c_{6}^{2} u_{6}^{2} + c_{7}^{2} u_{7}^{2}}$

表 D.3 标准不确定度汇总

不确定度分量 u _i	不确定度来源	标准不确定度 μV	相关系数	灵敏系数 c _i	标准不确定度 c _i u _i /μV
u _a	测量重复性	0.32	0	1	0.32
u_1	标准热电偶	1. 35 1. 73 2. 48	0	1	1. 35 1. 73 2. 48
u_2	电测仪器	1. 26 1. 33 1. 46		1 1 1	1. 26 1. 33 1. 46
u_3	电测仪器	1. 26 1. 33 1. 46	1	-1 -1 -1	-1. 26 -1. 33 -1. 46
u ₄	分度复现性	0. 87 0. 87 1. 45	0	1	0. 87 0. 87 1. 45
u_5	寄生电势	0. 23	0	1	0. 23
u_6	参考端温差	0.16	0	1	0.16
u ₇	炉温变化	0. 28 0. 30 0. 34	0	1	0. 28 0. 30 0. 34

锌点的合成标准不确定度为:

- u_c (锌) = $\sqrt{0.32^2 + 1.35^2 + 0.87^2 + 0.23^2 + 0.16^2 + 0.28^2} \mu V = 1.68 \mu V$ (0.174 °C) 铝点的合成标准不确定度为:
- u_{c} (铝) = $\sqrt{0.32^{2}+1.73^{2}+0.87^{2}+0.23^{2}+0.16^{2}+0.30^{2}}$ μ V = 2.01 μ V(0.193 $^{\circ}$ C) 铜点的合成标准不确定度为:
- $u_c(铜) = \sqrt{0.32^2 + 2.48^2 + 1.45^2 + 0.23^2 + 0.16^2 + 0.34^2} \, \mu V = 2.92 \, \mu V (0.247 \, ^{\circ}C)$ D. 7 扩展不确定度

接包含概率 p=0.95,取包含因子 k=2,扩展不确定度 $U=ku_c$,得: 锌点: $U=2\times0.174$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 0.35 $^{\circ}$ $^{\circ}$ 0, k=2;

铝点: $U=2\times0.193$ °C \approx 0.39 °C, k=2; 铜点: $U=2\times0.247$ °C \approx 0.49 °C, k=2.

D.8 测量不确定度评定结果的说明

从上述测量不确定度评定条件和结果可以看出,检定结果的扩展不确定度(k=2)在检定 II 级铂铑 10-铂热电偶时小于被检热电偶最大允许误差的 1/4,这说明规程选用的设备指标和检定方法是合理的。在检定 I 级铂铑 10-铂热电偶时检定结果的扩展不确定度(k=2)在不同的点分别是被检热电偶最大允许误差的($1/3\sim1/2$),这主要是由热电偶的基本特点和量值传递关系所决定的,因此这个比值范围对于 I 级铂铑 10-铂热电偶的检定也是合理的。

中 华 人 民 共 和 国 国家计量检定规程 工作用贵金属热电偶 JJG 141-2013

国家质量监督检验检疫总局发布

中国质检出版社出版发行 北京市朝阳区和平里西街甲2号(100013) 北京市西城区三里河北街16号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946

> 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1.75 字数 44 千字 2013 年 11 月第一版 2013 年 11 月第一次印刷

书号: 155026 • J-2845 定价 27.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

